13/9/22	Tutorial	Planning	· · ·
assignment No	tes:	V	
1) Free to	chose either S	sign convertion B'= 2NorB'=-2N	
as Ima	as non tell me	which now are using for hill outlain A	
non freu	1 Imstart -	Hyperal april Start - for High adda	ner i
Ţ) to bistery i	2 all a granning PT 21 bin	
Ln part	icular for Q.	S, [s cliqued usuning is - Lin sign	
Convento	h` A		• • •
2) 100-65,	you are fall :	to assume circular helps is given by	<u>ц</u>
a param	etrization of	a certain form)
$\propto 6$	$t) = (a \cos t)$, asmt, b).	
You can	then either	argue using Fund. Thm. of curves or solu	l
theo off	E problem of F	renet formulas to recover the above para	 Ин , .
You care	abo free to	adapt the electritics of entirely cal helis	• • •
You cure to Ane	also free to a	adapt the elephitic of cylindrical belix	· · · ·
You cire to grie (abo free to a 2 "general" de	adapt the elephitic of cylindrical belix function for chicedan cielix	
You cire to grie (<7	also free to a 2 "general" de $u = \cos \theta_0 =$	adapt the elifinition of cylindrical belix function for chicular cielix = const. and trace of a projected ont	
You cire to grie (<t. TN pla</t. 	also free to a x "general" da $u = \cos \theta_0 =$ me is a circle	adapt the elifinition of cylindrical belix function for chicular cielix = const. and trace of a projected ont 2.	
You cire to grie (<t. TN pla</t. 	also free to a 2 "general" da $10 = \cos \theta_0 =$ me is a circle	adapt the elifinition of equindrical belix function for chicular celix = const. and trace of a projected ont 2.	X
You cire to grie (<t. TN pla</t. 	also free to a a "general" da $a = \cos \theta_0 =$ me is a circle	adapt the elifinition of cylindrical belix function for chicular cielix = const. and trace of a projected ont 2.	
You cire to grie (<t TN pla</t 	also free to a a "general" dg $u = \cos \theta_0 =$ me is a circle	adapt the elfinition of cylindrical belix function for chicular cielix = const. and trace of \propto projected ont 2.	
You cire to grie (<7) TN pla	also free to a a "general" da $a = \cos \theta_0 =$ me is a circle	adapt the elfinition of cylindrical belix function for chicular cielix = const. and trace of \propto projected ont 2.	
You cire to grie (<7) TN pla	also free to a a "general" da $a = \cos \theta_0 =$ me is a circle	adapt the elifinition of equindrical belix function for circular cielix = const. and trace of \propto projected ont 2.	
You cure to grie (<7) TN pla	also free to a x "general" de $y = \cos \theta_0 =$ me is a circle	adapt the elifinition of equindrical belix function for circular cielix = const. and trace of \propto projected ont 2.	
You cure to grie (<t TN pla</t 	also free to a x "general" de $y = \cos \theta_0 =$ me is a circle	adapt the elifinition of equindrical belix function for chicular cielix = const. and trace of \propto projected ont 2.	
You cire to grie (<t TN plc</t 	abo free to a 2 "general" da , u> = costo = me is a circle	adapt the elifinition of equindrical belix function for chicular cielix = const. and trace of ~ projected ont 2.	
You cire to grie (<t. TN plc</t. 	also free to a x "general" dg $y = \cos \theta_0 =$ me is a circle	eclapt the elfinition of equivolvical belix function for chicedar cielix = const. and trace of \propto projected ont 2.	

Recall Def: Differential of a map: let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map. Then the differential of fat pell, $df_p: \mathbb{R}^n \to \mathbb{R}^n$ is defined as follows: let $\alpha: (-2, 2) \rightarrow U$ be a smooth curve with $\alpha(0) = p$, $\alpha'(0) = W$, then the curve $\beta = Fo \alpha: (-2, 2) \rightarrow \mathbb{R}^m$ IS SMooth and we define defp by $cf_{p}(w) = p(0).$ Note, when wrötten in the standend basis, §e,..., en 5, ofpische Jacobion matrix off at p. is. dFp(m). T pm · clfp Rn > Rm there are tangent spaces at p. f(p)

Recall Def (Regular Surface): NCR³ is a regular surface if for each pEN, there is a while UCR³ and an open set DCR² and a map X: D -> UNM S.t. 1) X is smooth 2) dx is full round: X = $\frac{\partial X}{\partial u}$, X = $\frac{\partial Y}{\partial v}$ are linearly independent for any (4, v) eD (=> dXp is 1-1 for each pED) 3) X is a homeomorphism \mathbb{R}^3 (u_1,v_1) (u_1,v_2) (u_1,v_2) (u_1,v_2) . Talk of (u,v) as the lacal coords of p if X(u,v)=p. Regulaivly condition (condition 2). avoid the following. P - no temgenot pleme here (regulanty conclotion) (homeomophism conclistion)

Ex 1: Hyperbolotel of 2 Sheets: -x2-y2+22=1. Show theat this
1 1 is a vegular surface and find a
pourmetrization.
Define $f(x,y,z) = -x^2 - y^2 + z^2 - 1$.
Clearly the surface is the inverse image
$f^{-1}(0) = \xi(x,y,z) : -x^{2} - y^{2} + z^{2} = 1$
Clearly f:RI -> R is smooth, and
Ois a regular value of f since
af = -2r, af2y af = 2z. So VF vomishes only of (0,0,0
and (0,0,0) & f (0). So it is a regular surface.
Remote as 12+12+1=22, Taling 12=12+12 (10 K=rcosv)
Then we got $r^2 + 1 = z^2 = 1 = z^2 - r^2$, $(1, y = rom v)$
Then by hypozodic trig identity cosh ² u - sinh ² u =1
we take Z= coshu, rasmiku, then we lieve
(x,y,z) = (sinhu cosv, sinhu sinv, coshu).
This is an annual of a regular of Fire Para the Lis disconnected
mis is an example of a regular surface mention disconnected
· · · · · · · · · · · · · · · · · · ·

$Ex2$: $f(x,y,z) = z^2$. Show $f^{-1}(0)$ is a negular surface.
$f'(0) = \{(x,y,z): 2^2 = 0\} <= \} \{z : Z = 0\}$
O is not a regular value of f smee
$\nabla f = (0, 0, 2z)$, so ∇f vanishes when $z = 0$, ie.
$0 \in f^{-1}(0)$
By above, f'(0) is the plane Z=0
Well show directly from the definition y
let $p \in f'(0)$, then write $p = (u, v, 0)$ for some $u, v \in \mathbb{R}$.
we here specified a param of f (0).
So X: $\mathbb{R}^2 \to f'(0)$ by X(u,v) = (u,v, 0).
· X is clearly surosth, a homeomorphism of R2 with P-1(0) = R2.
$dX = \left(\frac{\partial X_1}{\partial x_1}\right) = \left \frac{\partial X_1}{\partial x_1} - \frac{\partial X_1}{\partial x_1}\right = \left[1 - 0\right]$
ON OK OK ON I
Lon ov j L j
L'Collimns are lin, molep.
So f (S) is a regimer surface.

Ex3: Cotenoid: (ccosh ~ cosu, ccosh ~ smu, v) $ue(-\pi,\pi)$, veR, c+o const. Is the surface quevolition dotancel by rotating the costenary u=ccosh c 1/ about the vertical. () u wrote the cotoneny as $\alpha(v) = (0, ccoshy, v)$ Then rotating about the Z-axis, we have X(u,v) = (ccoshe cosu, ccoshe smu, v) Clearly X is smooth, we have vectricited domains of U, V so that X is homeomorphic. Finally, we have Xy= (sinhveosu, sinhvsinu, 1) Xu= (cosh_sinu, cosh_cosu, 0) which we can see are linearly independent. The catenaid is an example of a minimal surface (it is cally minimizes surface area (it is cally minimizes surface area functional $\int dA$ (i) we can curve the area functional $\int dA$ (i) mean curvesture identically $0 \quad \overrightarrow{H} = \frac{1}{2\pi} \int_{-\infty}^{2\pi} |\widehat{H}(a) da = 0$).